The ACD Model: Predictability of the Time Between Consecutive Trades
Abstract: Forecasting ability of several parameterizations of ACD models are compared to benchmark linear autoregressions for inter-trade durations. The estimation of parametric ACD models requires both the choice of a conditional density for durations and the specification of a functional form for the conditional mean duration. Our results provide guidance for choosing among different parameterizations and for developing better forecasting models to predict one-step-ahead, multi-step-ahead, and the whole density of time durations. For evaluating density forecasts, we propose a new constructive test, which is based on the series of probability integral transforms. The choice of the conditional distribution for inter-trade durations does not seem to affect the out-of sample performances of the ACD at short, as well as longer, horizons. Yet, this choice becomes critical when forecasting the density.
Published on | 6 September 2011 |
---|---|
Authors | Alfonso DufourRobert F. Engle |
Series Reference | 2000-05 |
This site uses cookies to improve your user experience. By using this site you agree to these cookies being set. You can read more about what cookies we use here. If you do not wish to accept cookies from this site please either disable cookies or refrain from using the site.